GENERAL CHEMISTRY, INORGANIC AND ORGANIC

Degree course: 
Corso di First cycle degree in ENGINEERING FOR WORK AND ENVIRONMENT SAFETY
Academic year when starting the degree: 
2022/2023
Year: 
1
Academic year in which the course will be held: 
2022/2023
Seat of the course: 
Varese - Università degli Studi dell'Insubria
Language: 
Italian
Credits: 
15
Standard lectures hours: 
136
Requirements: 

It is essential condition for addressing issues of Module A of the course the knowledge of concepts and basic fundamentals of mathematics (eg integral, exponential, logarithm, derivative, vector, tensor, matrix ...) and physical (eg the concepts of force, pressure, speed, potential energy, kinetic energy ...).
For Module B it is essential the knowledge of general chemistry concepts (eg electronic structure, theory of valence bond and molecular orbital, training and breaking of bonds, acis and bases, ...) that are considered preparatory to the understanding of organic chemistry.

Final Examination: 
Orale

The examination for Module A consists in a written test of typically 2,5 h duration. Both fundamentals of chemistry and exercises of stoichiometry will be included.
The questions may contain problems and exercises with calculations, balance of reactions. Each correct answer is awarded 1 point, while the wrong answers are subtracted 0.5 points.
The examination of Module B is a written text with exercises on nomenclature, chirality, reactivity, conformational stability, acidity and synthesis of organic molecules. Generally another question is on the description of the chemistry of a natural class of compounds (aminoacids and proteins, carbohydrates, lypids and nuclei acids).
The test is considered passed with the achievement of 36 points out of 72 and a null score is given for each incorrect answer. During the course of exercises in the final part of the course, the teacher illustrates examples of exercises performed in previous exam topics.
The final mark is the weighted average of the written tests of Module A and Module B respectively with a weight of 9/15 (nine / fifteenth) and 6/15 (six / fifteenth). Both tests must be passed with at least the result of 18/30. The teachers positively evaluate the use of an appropriate and appropriate scientific language in addition to the knowledge of the contents for the attribution of a positive evaluation. An oral exam can be defined as a description of the teachers.

Assessment: 
Voto Finale

Module A of the course, implemented to be suitable for students of science-based degree programs, it offers a wide and timely introduction to the basic principles, theoretical and experimental of general chemistry, with frequent references to the real world. We expect, as learning results: i) understanding of the atomic model and its application to electronic configurations and the periodic table; ii) the thermochemical aspects and treated kinetic; iii) the theory of acids and bases; iv) chemical balance. Not to be neglected are the abilities in i) drawing Lewis structures; ii) predict the stereochemistry by VSEPR theory; iii) represent molecular orbital diagrams for simple diatomic molecules; iv) perform simple calculations in stoichiometry (including the reactions) balance. Finally, it is essential to learn to use periodic properties, intermolecular interactions, concepts of thermodynamics, kinetics and chemical equilibrium for the interpretation of wide phenomenology of general chemistry.
Module B is designed to introduce and develop the fundamental concepts of organic chemistry for students who have previously assimilated the fundamentals of general and inorganic chemistry. The goal that arises is the knowledge i) of the Nomenclature of organic compounds and functional groups in organic chemistry; ii) the stereochemistry of organic molecules and their orientation in three-dimensional space; iii) the reactivity of the compound and how you can favor some transformations affecting kinetic and thermodynamic parameters; iv) the synthesis and the study which regards the possibility of preparing organic compounds of different molecular complexity. It will also be important to the acquisition of chemical concepts of natural compounds and the knowledge of the major classes of natural organic compounds such as carbohydrates, proteins, lipids and nucleic acids.

The Module A of the course is divided into 7 credits, equal to 56 hours, intended for the illustration of the program and theoretical explanations through lectures and in 2 credits, equal to 24 hours, in which exercises are carried out relating to the topics illustrated in the course. and which are completely similar to those that are provided in the exam tests.

The main contents of the Module A are summarized as follows:
1. Definitions of matter, states of aggregation, element, compound, mixture, atom isotope.
2. Evolution of the atomic model. Elements of quantum mechanics: Schroedinger wave equation for hydrogen-like and electron atoms; atomic orbital; electron spin; Electronic configurations of the elements.
3. The periodic table and periodic properties: atomic radii, ionic, metallic, covalent; ionization energy, electron affinity, electronegativity.
4. The ionic bond: lattice energy, Born-Haber cycle. The covalent bond: Lewis formulas and their exceptions; partially polar covalent bond, dative and coordinative. Theory 'Valence Shell Electron Pair Repulsion'. Hybrid orbital bonding model. Molecular orbital model. The metallic bond: Sea theory of electrons; band theory for metals and semiconductors.
5. United liquid, solid and gaseous. Phase transitions and phase diagrams.
6. Chemical thermodynamics: enthalpy, entropy, Gibbs free energy; first, second and third law of thermodynamics.
7. Chemical equilibrium: thermodynamic equilibrium constants; Le Chatelier's principle.
8. Chemical kinetics: reaction time; reaction of the first order, second, zero; Arrhenius equation; theory 'collisions' and 'activated complex'.
9. Acids and bases: Arrhenius definitions, Broensted, Lewis; acid-base; ionization constant of the acid and base; pH scale. pH of aqueous solutions of strong acids, weak acids, strong bases, of weak bases; titrations.
10. Basics of radiochemistry and nuclear chemistry.
11. Solubility equilibria in water. Sparingly soluble salts: the effect common ion; effect of pH on the dissolution of a salt in aqueous solution.
12. Elements of electrochemistry.
13. Stoichiometry: the relationship between mass and mole; the balance of the reactions; preparing non-reactive or reactive solutions; conducting reactions in the absence or in the presence of limiting agent.

Module B is explicitly divided into theoretical part (4 credits) and exercises (2 credits). The exercises will generally take place at the end of the illustration of each topic, with the teacher carrying out exercises of immediate application of the theoretical part addressed. At the end of the theoretical lessons, further sessions of summary exercises will be held with tests assigned in previous exam sessions.

The main contents of the Module B can be summarized as follows:

1. Structure and bonding; acids and bases. What is organic chemistry. Nomenclature. organic functional groups and structures
2. Classes of organic compounds: alkanes, alkenes, alkynes, dienes, aromatic compounds, alkyl halides, organometallic compounds, alcohols, phenols, ethers, thiols, sulfides, aldehydes and ketones, amines, nitro compounds, heterocyclic derivatives, carboxylic acids and their derivatives .
3. The organic reactions. nucleophilic addition reactions, electrophilic addition, elimination, of nucleophilic substitution, electrophilic aromatic substitution, nucleophilic substitution reactions acyl
4. The substitution reactions in alpha to the carbonyl and the condensation reactions
5. Acidity and pKa.
6. Delocalization and conjugation
7. The stereochemistry of the tetrahedral compounds
8. The chemistry of life and biomolecules: carbohydrates, amino acids, peptides, proteins, lipids and nucleic acids

Types of teaching activities

The educational activities of Modeule A and Modeule B consist only of lectures. For some lessons it will be possible to organize some exercise sessions.

The teaching activities of Module A consist of 7 credits of frontal lessons, while for the remaining two credits Sessions of exercises are organized. For Module B the 6 credits are made up of lectures in which sessions of exercises are inserted.

The lecturers are available to more details and clarifications on any requests made by the students receiving at his office by previous contact via email or by phone:

MODULE A:
angelo.maspero@uninsubria.it
(031-2386472);
MODULO B:
andrea.penoni@uninsubria.it (031-2386440).

Modules