BIOINORGANIC CHEMISTRY PART A
To address successfully the topics of the course, students must have solid knowledge of coordination chemistry (geometry, electronic properties, fundamental reactions) and of basic organic chemistry and chemical physics.
The purpose of the course is to provide basic knowledge on the nature and properties of the more common metal-enzymes, with a focus on function and structure of the active site and on the role of these molecules in biological structures. Students completing the course will have become aware of the role of metals (mainly transition) in the organization of living systems.
1.Introduction. Primordial atmosphere. Bioavailability. Recalls on the structure and properties of biomolecules. The active site of a metal-protein. Structural or catalytic function. Recalls on enzymatic catalysis. Biomimicry
2.Zinc. Carbonic anhydrase. Carboxypeptidase. Alcohol dehydrogenase. Zinc fingers and DNA. The role of zinc in the insulin metabolism. Toxic elements of the group zinc: Cd and Hg. Other toxic metals: Pb, Cr.
3.Copper. Oxygen carriers. Blue-copper proteins and electron transport. Superoxide dismutase (Zn, Cu-SOD).
4.Iron. Heme and non-heme iron-protein. Oxygen carriers: myoglobin, hemoglobin, eritrocruorin. Plant symbiotic and not symbiotic hemoglobin. Bacterial hemoglobin: flavohemoglobin. Iron-sulfur proteins. Rubredoxin. Siderophores. Convergent evolution and SOD (Cu/Zn, Fe, Ni, Mn). Cytochromes
Slides presented in class will be available to the students on the university e-learning platform in the days before the holding of the lectures. The Protein Data Bank (PDB, free access) may also provide useful references to the original literature.